Multi-agent, reward shaping for RoboCup KeepAway

نویسندگان

  • Sam Devlin
  • Marek Grzes
  • Daniel Kudenko
چکیده

This paper investigates the impact of reward shaping in multi-agent reinforcement learning as a way to incorporate domain knowledge about good strategies. In theory [2], potential-based reward shaping does not alter the Nash Equilibria of a stochastic game, only the exploration of the shaped agent. We demonstrate empirically the performance of statebased and state-action-based reward shaping in RoboCup KeepAway. The results illustrate that reward shaping can alter both the learning time required to reach a stable joint policy and the final group performance for better or worse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Study of Potential-Based Reward Shaping and Advice in Complex, Multi-Agent Systems

This paper investigates the impact of reward shaping in multi-agent reinforcement learning as a way to incorporate domain knowledge about good strategies. In theory, potentialbased reward shaping does not alter the Nash Equilibria of a stochastic game, only the exploration of the shaped agent. We demonstrate empirically the performance of reward shaping in two problem domains within the context...

متن کامل

Effects of Shaping a Reward on Multiagent Reinforcement Learning

In reinforcement learning problems, agents take sequential actions with the goal of maximizing a time-delayed reward. In this chapter, the design of reward shaping for a continuing task in a multiagent domain is investigated. We use an interesting example, keepaway soccer (Kuhlmann, 2003; Stone, 2002; Stone, 2006), in which a team tries to maintain ball possession by avoiding the opponent’s int...

متن کامل

Argumentation-Based Reinforcement Learning for RoboCup Soccer Keepaway

Reinforcement Learning (RL) suffers from several difficulties when applied to domains with no obvious goal state defined; this leads to inefficiency in RL algorithms. In this paper we consider a solution within the context of a widely-used testbed for RL, that of RoboCup Keepaway soccer. We introduce Argumentation-Based RL (ABRL), using methods from argumentation theory to integrate domain know...

متن کامل

Argumentation Accelerated Reinforcement Learning for RoboCup Keepaway-Takeaway

Multi-Agent Learning (MAL) is a complex problem, especially in real-time systems where both cooperative and competitive learning are involved. We study this problem in the RoboCup Soccer KeepawayTakeaway game and propose Argumentation Accelerated Reinforcement Learning (AARL) for this game. AARL incorporates heuristics, represented by arguments in Value-Based Argumentation, into Reinforcement L...

متن کامل

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study

We present half field offense, a novel subtask of RoboCup simulated soccer, and pose it as a problem for reinforcement learning. In this task, an offense team attempts to outplay a defense team in order to shoot goals. Half field offense extends keepaway [11], a simpler subtask of RoboCup soccer in which one team must try to keep possession of the ball within a small rectangular region, and awa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011